Advertisement
Review Article| Volume 2, ISSUE 1, P71-79, May 2022

NTRK Inhibitors in Adult Patients with Solid Tumors

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stransky N.
        • Cerami E.
        • Schalm S.
        • et al.
        The landscape of kinase fusions in cancer.
        Nat Commun. 2014; 5: 4846
        • Solomon J.P.
        • Linkov I.
        • Rosado A.
        • et al.
        NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls.
        Mod Pathol. 2020; 33: 38-46
        • Reichardt L.F.
        Neurotrophin-regulated signalling pathways.
        Philos Trans R Soc Lond B Biol Sci. 2006; 361: 1545-1564
        • Martin-Zanca D.
        • Hughes S.H.
        • Barbacid M.
        A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences.
        Nature. 1986; 319: 743-748
        • Westphalen C.B.
        • Krebs M.G.
        • Le Tourneau C.
        • et al.
        Genomic context of NTRK1/2/3fusion-positive tumours from a large real-world population.
        NPJ Precis Onc. 2021; 5: 86https://doi.org/10.1038/s41698-021-00206-y
        • Hong D.S.
        • DuBois S.G.
        • Kummar S.
        • et al.
        Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials.
        Lancet Oncol. 2020; 21: 531-540
        • Drilon A.
        • Laetsch T.W.
        • Kummar S.
        • et al.
        Efficacy of Larotrectinib in TRK fusion-positive cancers in adults and children.
        N Engl J Med. 2018; 378: 731-739
        • Drilon A.
        • Siena S.
        • Ou S.I.
        • et al.
        Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1).
        Cancer Discov. 2017; 7: 400-409
        • Papadopoulos K.P.
        • Borazanci E.
        • Shaw A.T.
        • et al.
        U.S. phase I first-in-human study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK inhibitor, in patients with advanced solid tumors.
        Clin Cancer Res. 2020; 26: 4785-4794
        • Cho B.C.
        • Doebele R.C.
        • Lin J.J.
        • et al.
        MA11.07 Phase 1/2 TRIDENT-1 study of repotrectinib in patients with ROS1+ or NTRK+ advanced solid tumors.
        J Thorac Oncol. 2021; 16
        • Kaplan D.R.
        • Miller F.D.
        Neurotrophin signal transduction in the nervous system.
        Curr Opin Neurobiol. 2000; 10: 381-391
        • Snider W.D.
        Functions of the neurotrophins during nervous system development: what the knockouts are teaching us.
        Cell. 1994; 77: 627-638
        • Sajanti A.
        • Lyne S.B.
        • Girard R.
        • et al.
        A comprehensive p75 neurotrophin receptor gene network and pathway analyses identifying new target genes.
        Sci Rep. 2020; 10: 14984https://doi.org/10.1038/s41598-020-72061-z
        • Cocco E.
        • Scaltriti M.
        • Drilon A.
        NTRK fusion-positive cancers and TRK inhibitor therapy.
        Nat Rev Clin Oncol. 2018; 15: 731-747
        • Arevalo J.C.
        • Conde B.
        • Hempstead B.L.
        • et al.
        TrkA Immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor.
        Mol Cell Biol. 2020; 20: 5908-5916
        • Somwar R.
        • Hofmann N.E.
        • Smith B.
        • et al.
        NTRK kinase domain mutations in cancer variably impact sensitivity to type I and type II inhibitors.
        Commun Biol. 2020; 3: 776https://doi.org/10.1038/s42003-020-01508-w
        • Vaishnavi A.
        • Le A.T.
        • Doebele R.C.
        TRKing down an old oncogene in a new era of targeted therapy.
        Cancer Discov. 2015; 5: 25-34
        • Mardy S.
        • Miura Y.
        • Endo F.
        • et al.
        Congenital insensitivity to pain with anhidrosis: novel mutations in the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor.
        Am J Hum Genet. 1999; 64: 1570-1579
        • Ardini E.
        • Bosotti R.
        • Borgia A.L.
        • et al.
        The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition.
        Mol Oncol. 2014; 8: 1495-1507
        • Reuther G.W.
        • Lambert Q.T.
        • Caliguiri M.A.
        • et al.
        Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia.
        Mol Cell Biol. 2000; 20 (2000) 8655-8666)
        • Tacconelli A.
        • Farina A.R.
        • Cappabianca L.
        • et al.
        Trka alternative splicing: a regulated tumor-promoting switch in human neuroblastoma.
        Cancer Cell. 2004; 6: 347-360
        • Drilon A.
        • Li G.
        • Dogan S.
        • et al.
        What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC).
        Ann Oncol. 2016; 27: 920-926
        • Marino F.Z.
        • Palgiuca F.
        • Ronchi A.
        • et al.
        NTRK fusions, from the diagnositc algorithm to innovative treatment in the era of precision medicine.
        Int J Mol Sci. 2020; 21: 3718
        • Chou A.
        • Fraser T.
        • Ahadi M.
        • et al.
        NTRK gene rearrangements are highly enriched in MLH1/PMS2 deficient, BRAF wild-type colorectal carcinomas-a study of 4569 cases.
        Mod Pathol. 2020; 33: 924-932
        • Edel M.
        • Shvarts A.
        • Medema J.
        • et al.
        An in vivo functional genetic screen reveals a role for the TRK-T3 oncogene in tumor progression.
        Oncogene. 2004; 23: 4959-4965
        • Kloosterman W.P.
        • Coebergh van den Braak R.R.J.
        • Pieterse M.
        • et al.
        A systematic analysis of oncogenic gene fusions in primary colon cancer.
        Cancer Res. 2017; 77: 3814-3822
        • Rosen E.Y.
        • Goldman D.A.
        • Hechtman J.F.
        • et al.
        TRK fusions are enriched in cancers with uncommon histologies and the absence of canonical driver mutations.
        Clin Cancer Res. 2020; 26: 1624-1632
        • Doebele R.C.
        • Davis L.E.
        • Vaishnavi A.
        • et al.
        An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101.
        Cancer Discov. 2015; 5: 1049-1057
        • Ardini E.
        • Menichincheri M.
        • Banfi P.
        • et al.
        Entertain, a Pan–TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications.
        Mol Cancer Ther. 2016; 15: 628-639
        • Liu D.
        • Offin M.
        • Harnicar S.
        • et al.
        Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors.
        Ther Clin Risk Manag. 2018; 14: 1247-1252
      1. FDA approves larotrectinib for solid tumors with NTRK gene fusions.
        (Available from) (Accessed August 29, 2021)
      2. FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC.
        (Available from) (Accessed August 29, 2021)
        • Sartore-Bianchi A.
        • Ardini E.
        • Bosotti R.
        • et al.
        Sensitivity to Entrectinib associated With a Novel LMNA-NTRK1 gene fusion in metastatic colorectal cancer.
        J Natl Cancer Inst. 2016; 108https://doi.org/10.1093/jnci/djv306
        • Farago A.F.
        • Le L.P.
        • Zheng Z.
        • et al.
        Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer.
        J Thorac Oncol. 2015; 10: 1670-1674
        • Drilon A.
        TRK inhibitors in TRK fusion-positive cancers.
        Ann Oncol. 2019; 30: viii23-viii30
        • Russo M.
        • Misale S.
        • Wei G.
        • et al.
        Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer.
        Cancer Discov. 2016; 6: 36-44
        • Drilon A.
        • Nagasubramanian R.
        • Blake J.F.
        • et al.
        A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase Inhibition in patients with TRK fusion-positive solid tumors.
        Cancer Discov. 2017; 7: 963-972
        • Drilon A.
        • Ou S.I.
        • Cho B.C.
        • et al.
        Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent- Front Mutations.
        Cancer Discov. 2018; 8: 1227-1236
        • Katayama R.
        • Gong B.
        • Togashi N.
        • et al.
        The new-generation selective ROS1/NTRK inhibitor DS-6051b overcomes crizotinib resistant ROS1-G2032R mutation in preclinical models.
        Nat Commun. 2019; 10: 3604
        • Hyman D.
        • Kummar S.
        • Hong D.
        • et al.
        Phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRKi).
        in: Proceedings of the 110th Annual meeting of the american association for cancer research; 2019. AACR, Atlanta, GA. Philadelphia (PA)2019 (Abstract nr CT127)
        • Fuse M.J.
        • Okada K.
        • Oh-hara T.
        • et al.
        Mechanisms of resistance to NTRK inhibitors and therapeutic strategies in NTRK1-rearranged cancers.
        Mol Cancer Ther. 2017; 16: 2130-2143
        • Onidani K.
        • Shoji H.
        • Kakizaki T.
        • et al.
        Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA.
        Cancer Sci. 2019; 110: 2590-2599
        • Cocco E.
        • Schram A.M.
        • Kulick A.
        • et al.
        Resistance to TRK inhibition mediated by convergent MAPK activation.
        Nat Med. 2019; 25: 1422-1427
        • Li W.
        • Sparidans R.W.
        • Martins M.L.F.
        • et al.
        ABCB1 and ABCG2 restrict brain and testis accumulation and, alongside CYP3A, limit oral availability of the novel TRK inhibitor selitrectinib.
        Mol Cancer Ther. 2021; 20: 1173-1182