Advertisement
Review Article| Volume 2, ISSUE 1, P139-158, May 2022

Download started.

Ok

Clinical Trials of Oncolytic Viruses in Glioblastoma

  • Madison L. Shoaf
    Correspondence
    Corresponding author.
    Affiliations
    Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Trent Drive, 047 Baker House, Durham, NC 27710, USA
    Search for articles by this author
  • Katherine B. Peters
    Affiliations
    Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Trent Drive, 047 Baker House, Durham, NC 27710, USA

    Department of Neurology, Duke University Medical Center, Bryan Research Buildling, 311 Research Dr, Durham, NC 27710, USA
    Search for articles by this author
Published:April 07, 2022DOI:https://doi.org/10.1016/j.yao.2022.02.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ostrom Q.T.
        • Cioffi G.
        • Gittleman H.
        • et al.
        CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016.
        Neuro Oncol. 2019; 21: v1-v100
        • Stupp R.
        • Mason W.P.
        • van den Bent M.J.
        • et al.
        Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 352: 987-996
        • Stupp R.
        • Taillibert S.
        • Kanner A.
        • et al.
        Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial.
        JAMA. 2017; 318: 2306-2316
        • van Linde M.E.
        • Brahm C.G.
        • de Witt Hamer P.C.
        • et al.
        Treatment outcome of patients with recurrent glioblastoma multiforme: a retrospective multicenter analysis.
        J Neurooncol. 2017; 135: 183-192
        • Wu W.
        • Klockow J.L.
        • Zhang M.
        • et al.
        Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance.
        Pharmacol Res. 2021; 171: 105780
        • Humphries W.
        • Wei J.
        • Sampson J.H.
        • et al.
        The role of tregs in glioma-mediated immunosuppression: potential target for intervention.
        Neurosurg Clin N Am. 2010; 21: 125-137
        • Banerjee K.
        • Nunez F.J.
        • Haase S.
        • et al.
        Current approaches for glioma gene therapy and virotherapy.
        Front Mol Neurosci. 2021; 14: 621831
        • Bernstock J.D.
        • Mooney J.H.
        • Ilyas A.
        • et al.
        Molecular and cellular intratumoral heterogeneity in primary glioblastoma: clinical and translational implications.
        J Neurosurg. 2019; : 1-9
        • Immidisetti A.V.
        • Nwagwu C.D.
        • Adamson D.C.
        • et al.
        Clinically explored virus-based therapies for the treatment of recurrent high-grade glioma in adults.
        Biomedicines. 2021; 9
        • Rius-Rocabert S.
        • Garcia-Romero N.
        • Garcia A.
        • et al.
        Oncolytic virotherapy in glioma tumors.
        Int J Mol Sci. 2020; 21
        • Soldozy S.
        • Skaff A.
        • Soldozy K.
        • et al.
        From bench to bedside, the current state of oncolytic virotherapy in pediatric glioma.
        Neurosurgery. 2020; 87: 1091-1097
        • Estevez-Ordonez D.
        • Chagoya G.
        • Salehani A.
        • et al.
        Immunovirotherapy for the treatment of glioblastoma and other malignant gliomas.
        Neurosurg Clin N Am. 2021; 32: 265-281
        • Achard C.
        • Surendran A.
        • Wedge M.E.
        • et al.
        Lighting a fire in the tumor microenvironment using oncolytic immunotherapy.
        EBioMedicine. 2018; 31: 17-24
        • Conry R.M.
        • Westbrook B.
        • McKee S.
        • et al.
        Talimogene laherparepvec: first in class oncolytic virotherapy.
        Hum Vaccin Immunother. 2018; 14: 839-846
        • McKie E.A.
        • MacLean A.R.
        • Lewis A.D.
        • et al.
        Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours--evaluation of a potentially effective clinical therapy.
        Br J Cancer. 1996; 74: 745-752
        • Rampling R.
        • Cruickshank G.
        • Papanastassiou V.
        • et al.
        Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma.
        Gene Ther. 2000; 7: 859-866
        • Papanastassiou V.
        • Rampling R.
        • Fraser M.
        • et al.
        The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study.
        Gene Ther. 2002; 9: 398-406
        • Harrow S.
        • Papanastassiou V.
        • Harland J.
        • et al.
        HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival.
        Gene Ther. 2004; 11: 1648-1658
        • Markert J.M.
        • Medlock M.D.
        • Rabkin S.D.
        • et al.
        Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial.
        Gene Ther. 2000; 7: 867-874
        • Markert J.M.
        • Liechty P.G.
        • Wang W.
        • et al.
        Phase Ib trial of mutant herpes simplex virus G207 inoculated pre- and post-tumor resection for recurrent GBM.
        Mol Ther. 2009; 17: 199-207
        • Markert J.M.
        • Razdan S.N.
        • Kuo H.C.
        • et al.
        A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses.
        Mol Ther. 2014; 22: 1048-1055
        • Todo T.
        Oncolytic virus therapy using genetically engineered herpes simplex viruses.
        Front Biosci. 2008; 13: 2060-2064
        • Taguchi S.
        • Fukuhara H.
        • Todo T.
        Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives.
        Jpn J Clin Oncol. 2019; 49: 201-209
        • Todo T.
        Results of phase II clinical trial of oncolytic herpes virus G47Δ in patients with glioblastoma.
        Neuro Oncol. 2019; 21: vi4
      1. DELYTACT® oncolytic virus G47Δ approved in Japan for treatment of patients with malignant glioma.
        (Available at:) (Accessed September 15, 2021)
        • Kambara H.
        • Okano H.
        • Chiocca E.A.
        • et al.
        An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor.
        Cancer Res. 2005; 65: 2832-2839
        • Patel D.M.
        • Foreman P.M.
        • Nabors L.B.
        • et al.
        Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma.
        Hum Gene Ther Clin Dev. 2016; 27: 69-78
        • Shah A.C.
        • Parker J.N.
        • Gillespie G.Y.
        • et al.
        Enhanced antiglioma activity of chimeric HCMV/HSV-1 oncolytic viruses.
        Gene Ther. 2007; 14: 1045-1054
        • Zhang D.Y.
        • Singer L.
        • Sonabend A.M.
        • et al.
        Gene therapy for the treatment of malignant glioma.
        Adv Oncol. 2021; 1: 189-202
        • Bischoff J.R.
        • Kirn D.H.
        • Williams A.
        • et al.
        An adenovirus mutant that replicates selectively in p53-deficient human tumor cells.
        Science. 1996; 274: 373-376
        • Chiocca E.A.
        • Abbed K.M.
        • Tatter S.
        • et al.
        A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting.
        Mol Ther. 2004; 10: 958-966
        • Suzuki K.
        • Fueyo J.
        • Krasnykh V.
        • et al.
        A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency.
        Clin Cancer Res. 2001; 7: 120-126
        • Lang F.F.
        • Conrad C.
        • Gomez-Manzano C.
        • et al.
        Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma.
        J Clin Oncol. 2018; 36: 1419-1427
        • Alonso M.
        • Garcia-Moure M.
        • Gonzalez-Huarriz M.
        • et al.
        Abstract CT027: oncolytic virus DNX-2401 with a short course of temozolomide for glioblastoma at first recurrence: clinical data and prognostic biomarkers.
        Cancer Res. 2017; 77
        • Lang F.
        • Tran N.
        • Puduvalli V.
        • et al.
        Phase 1b open-label randomized study of the oncolytic adenovirus DNX-2401 administered with or without interferon gamma for recurrent glioblastoma.
        J Clin Oncol. 2017; 35: 2002
        • Zadeh G.
        • Daras M.
        • Cloughesy T.
        • et al.
        Phase 2 multicenter study of the oncolytic adenovirus DNX-2401 (tasadenoturev) in combination with pembrolizumab for recurrent glioblastoma; CAPTIVE study (keynote-192).
        Neuro Oncol. 2020; 22: ii237
        • Jiang H.
        • Rivera-Molina Y.
        • Gomez-Manzano C.
        • et al.
        Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination.
        Cancer Res. 2017; 77: 3894-3907
        • Ulasov I.V.
        • Zhu Z.B.
        • Tyler M.A.
        • et al.
        Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma.
        Hum Gene Ther. 2007; 18: 589-602
        • Fares J.
        • Ahmed A.U.
        • Ulasov I.V.
        • et al.
        Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial.
        Lancet Oncol. 2021; 22: 1103-1114
        • Wheeler L.A.
        • Manzanera A.G.
        • Bell S.D.
        • et al.
        Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma.
        Neuro Oncol. 2016; 18: 1137-1145
        • Trask T.W.
        • Trask R.P.
        • Aguilar-Cordova E.
        • et al.
        Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors.
        Mol Ther. 2000; 1: 195-203
        • Ji N.
        • Weng D.
        • Liu C.
        • et al.
        Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma.
        Oncotarget. 2016; 7: 4369-4378
        • Chiocca E.A.
        • Aguilar L.K.
        • Bell S.D.
        • et al.
        Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma.
        J Clin Oncol. 2011; 29: 3611-3619
        • Badie B.
        • Kramar M.H.
        • Lau R.
        • et al.
        Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors.
        J Neurooncol. 1998; 37: 217-222
        • Lang F.F.
        • Bruner J.M.
        • Fuller G.N.
        • et al.
        Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results.
        J Clin Oncol. 2003; 21: 2508-2518
        • Barrett J.A.
        • Cai H.
        • Miao J.
        • et al.
        Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System((R)) (RTS((R))) gene switch as gene therapy for the treatment of glioma.
        Cancer Gene Ther. 2018; 25: 106-116
        • Chiocca E.A.
        • Yu J.S.
        • Lukas R.V.
        • et al.
        Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial.
        Sci Transl Med. 2019; 11
        • McCord M.
        • Lukas R.V.
        • Amidei C.
        • et al.
        Disappearance of MMR-deficient subclones after controlled IL-12 and PD-1 inhibition in a glioma patient.
        Neurooncol Adv. 2021; 3: vdab045
        • Samson A.
        • Scott K.J.
        • Taggart D.
        • et al.
        Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade.
        Sci Transl Med. 2018; 10
        • Forsyth P.
        • Roldan G.
        • George D.
        • et al.
        A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas.
        Mol Ther. 2008; 16: 627-632
        • Kicielinski K.P.
        • Chiocca E.A.
        • Yu J.S.
        • et al.
        Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults.
        Mol Ther. 2014; 22: 1056-1062
        • Kemp V.
        • van den Wollenberg D.J.M.
        • Camps M.G.M.
        • et al.
        Arming oncolytic reovirus with GM-CSF gene to enhance immunity.
        Cancer Gene Ther. 2019; 26: 268-281
        • Merrill M.K.
        • Bernhardt G.
        • Sampson J.H.
        • et al.
        Poliovirus receptor CD155-targeted oncolysis of glioma.
        Neuro Oncol. 2004; 6: 208-217
        • Gromeier M.
        • Nair S.K.
        Recombinant poliovirus for cancer immunotherapy.
        Annu Rev Med. 2018; 69: 289-299
        • Desjardins A.
        • Gromeier M.
        • Herndon 2nd, J.E.
        • et al.
        Recurrent glioblastoma treated with recombinant poliovirus.
        N Engl J Med. 2018; 379: 150-161
        • Perez O.D.
        • Logg C.R.
        • Hiraoka K.
        • et al.
        Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression.
        Mol Ther. 2012; 20: 1689-1698
        • Cloughesy T.F.
        • Landolfi J.
        • Vogelbaum M.A.
        • et al.
        Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC.
        Neuro Oncol. 2018; 20: 1383-1392
        • Aghi M.
        • Vogelbaum S.
        • Kalkanis D.
        • et al.
        Long-term follow-up data from 126 patients with recurrent high grade glioma from three Phase 1 trials of Toca 511 and Toca FC: update and justification for Phase 2/3 trial.
        Neuro Oncol. 2017; 19: iii19
        • Cloughesy T.F.
        • Petrecca K.
        • Walbert T.
        • et al.
        Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial.
        JAMA Oncol. 2020; 6: 1939-1946
      2. Viral therapy in treating patients with recurrent glioblastoma multiforme. ClinicalTrials.gov identifier: NCT00390299. Available at: https://clinicaltrials.gov/ct2/show/NCT00390299. Accessed August 13, 2020.

        • Yaacov B.
        • Eliahoo E.
        • Lazar I.
        • et al.
        Selective oncolytic effect of an attenuated Newcastle disease virus (NDV-HUJ) in lung tumors.
        Cancer Gene Ther. 2008; 15: 795-807
        • Freeman A.I.
        • Zakay-Rones Z.
        • Gomori J.M.
        • et al.
        Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme.
        Mol Ther. 2006; 13: 221-228
        • Csatary L.K.
        • Gosztonyi G.
        • Szeberenyi J.
        • et al.
        MTH-68/H oncolytic viral treatment in human high-grade gliomas.
        J Neurooncol. 2004; 67: 83-93
        • Geletneky K.
        • Hajda J.
        • Angelova A.L.
        • et al.
        Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial.
        Mol Ther. 2017; 25: 2620-2634
        • Foloppe J.
        • Kempf J.
        • Futin N.
        • et al.
        The enhanced tumor specificity of TG6002, an armed oncolytic vaccinia virus deleted in two genes involved in nucleotide metabolism.
        Mol Ther Oncolytics. 2019; 14: 1-14
        • Cloughesy T.F.
        • Landolfi J.
        • Hogan D.J.
        • et al.
        Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma.
        Sci Transl Med. 2016; 8: 341ra375
        • Moaven O.
        • Mangieri C.W.
        • Stauffer J.A.
        • et al.
        Evolving role of oncolytic virotherapy: challenges and prospects in clinical practice.
        JCO Precis Oncol. 2021; 5
        • Suryawanshi Y.R.
        • Schulze A.J.
        Oncolytic viruses for malignant glioma: on the verge of success?.
        Viruses. 2021; 13
        • Bommareddy P.K.
        • Shettigar M.
        • Kaufman H.L.
        Integrating oncolytic viruses in combination cancer immunotherapy.
        Nat Rev Immunol. 2018; 18: 498-513
        • Park A.K.
        • Fong Y.
        • Kim S.I.
        • et al.
        Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors.
        Sci Transl Med. 2020; 12